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Abstract

In the Three Gorges Reservoir (TGR), sedimentation of the riparian zone has occurred over the past
10 years. However, the sediment and related environmental effects have not been explored well. In the present
study, sediment and soil in situ were collected in three sites of the riparian zone in the TGR. Samples were
analyzed for water content, bulk density, pH, organic matter, total nitrogen, total phosphorus, and heavy met-
als (As, Cr, Cu, Ni, Pb, Zn). Results revealed that, compared with soil, water content, organic matter, and total
phosphorus of sediment were high while bulk density was low. Heavy metal concentrations (As, Cu, Pb, Zn)
in sediment were significantly higher than those in soil. Sediment was moderately polluted by Cu and Pb, and
soil was unpolluted-moderately polluted by As and Cu. Moreover, the individual and comprehensive potential
ecological risk of heavy metals from both sediment and soil showed a low degree. Enrichment of nutrients and
heavy metals in sediment of the riparian zone are probably of formation regime and anthropogenic activities,
and could pose risks to the environment and human health. Therefore, enhanced efforts of soil and water con-
servation and pollution treatment in the upper stream of the Yangtze River and the TGR area should be

recommended.
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Introduction

The Three Gorges Reservoir (TGR) and dam in central
China constitutes one of the largest hydropower-generation
projects in the world. The reservoir has a length of 660 km,
a surface area of 1,040 km? and a static storage capacity
(water volume) of 39.3 km’ at its highest constraining water
level of 175 m above sea level. To preserve reservoir capac-
ity, the TGR is operated by the rule of “storing the clear
water and discharging the muddy flow.” Under conditions
of extremely low flow, reservoir sedimentation cannot be
avoided even if this operation mode is adopted. Moreover, as
it stores summer flooding, the TGR will block the moving
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sand and cause it to pile up on the river bed as well as the
riparian zone. Previous studies have estimated the sedi-
mentation in the TGR with different approaches [1-3], and
indicated that from June 2003 to December 2010 the sedi-
ment deposition was 1.17 billion tons, of which 10 million
tons deposition occurred in the riparian zone [4]. In other
words, sedimentation of the riparian zone occurred in the
past 10 years [5]. It is worth noting that sedimentation in the
reservoir results in a progressive reduction in storage capac-
ity, and triggers a series of physical, chemical, and ecolog-
ical impacts on the environment [6]. However, sediment
and related environmental problems — especially in the
riparian zone of the TGR — have been inadequately studied.

Heavy metals are involved in various anthropogenic
activities, such as industry practices, agricultural activities,
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Table 1. Description of sampling sites in the riparian zone of the Three Gorges Reservoir.

Site Location Aspect Slope (°) Vegetation Previous land use
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domestic waste, and vehicles emissions, etc., and they are
considered as the most serious pollutants due to persistence
in the environment, bioaccumulation, and high toxicity [7,
8]. In a landscape, the riparian zone is an effective sink for
heavy metals as incorporation and accumulation of pollu-
tants from both terrestrial and aquatic systems [9]. Thus,
there is an increasing concern about heavy metal contami-
nation and related environmental effects of riparian areas in
recent years [10-13]. In the TGR, previous studies showed
that heavy metal pollution is present in riparian areas [14,
15]. For example, studies indicated that soil or sediment of
the riparian zone was polluted by Hg, Cd, and Pb after sub-
mergence [16-18]. However, authors did not explore that
the samples for laboratory analysis are from soil, sediment,
or composite of sediment and soil in riparian areas. It is
well known that the difference in formation regime
between sediment and soil would have an effect on absorp-
tion, accumulation, and distribution of heavy metals. We
could not obtain completely reliable information since sed-
iment is regarded as soil, and soil is considered as sediment.
In this study, therefore, the sediment was strictly separated
from the soil in the riparian zone. Moreover, we hypothe-
sized that there would be significant differences in basic
physical characteristics, nutrition content, and heavy metal
concentration between sediment and soil in the riparian
area of the TGR. The major objectives of this study were to:
1) examine the differences in physiochemical characteris-
tics and heavy metal concentrations between sediment
and soil
2) assess the pollution status and potential ecological risk
of heavy metals from sediment and soil in the riparian
zone of the TGR.

Materials and Methods
Site Description

With the Three Gorges Dam fully functioning as of July
4, 2012, the water level fluctuates from 145 m in summer
to 175 m in winter, resulting in the formation of the ripari-
an zone with a total area of 344 km?* [19]. The study region
is located at Zhongxian County, in the middle section of
the TGR. Climate in this region is southeast sub-tropical
monsoon, with an average annual temperature of 18.2°C
and a mean annual precipitation of 1,172 mm [17].
Depending on altitude, vegetation in the riparian zone can

be divided into two types: one is located in the low ripari-
an zone (145-160 m) and dominated by perennial plants
such as Cyperus rotundus and Cynodon dactylon (L.) Pers.
the other is located in the high water level zone (165-175
m), and is dominated by annual plants such as Conyza
Japonica (Thunb.) Less and Bidens pilosa L. [20].

Sampling and Laboratory Analysis

In this study, three typical sites with similar geological
environments, vegetation, and history of land use were cho-
sen (Table 1). Field sampling was conducted in August 2013,
when the water level remained around 146 m. Before sam-
pling, sediment and soil were identified by comparing the
vertical and horizontal compositions (color and texture) of
the profiles [5, 21]. In each site, three plots (1 mx1 m) were
randomly selected for sediment and soil, respectively. In each
plot, three soil or sediment samples from 0-10 cm and the 10-
20 cm were collected with a plastic shovel, and the samples
were mixed well to form a composite sample according to
depth. As sedimentation mainly occurs in low altitude, such
as 150-160 m, in the riparian zone [5] all sediment samples
were from this altitude. To reduce effect of elevation on char-
acteristics of soil and sediment, soil samples were from the
same area as sediment. A total of 36 composite samples,
including 18 for sediment and 18 for soil, were obtained.

Soil/sediment composite samples were air-dried, passed
through a 2 mm polyethylene sieve, and analyzed for pH,
organic matter, total nitrogen, total phosphorus, and heavy
metals (As, Cr, Cu, Ni, Pb, and Zn). pH was measured in a
2.5:1 ratio of water-to-soil or sediment suspension using a
glass pH electrode [22]. Organic matter (by K,CrO,-H,SO,
titration method after digestion), total nitrogen (by Kjeldahl
method), and total phosphorus (by molybdenum blue colori-
metric method) were determined [23]. The heavy metal con-
centrations (As, Cr, Cu, Ni, Pb, and Zn) were obtained by
acid digestion according to Method 3050B [24]. In addition,
to measure bulk density and water content, three intact soil or
sediment cores were taken by core sampler when samples for
heavy metals were selected, and dried at 105°C for 24 h [25].

Data Analysis

Contamination Assessment

The geo-accumulation Index (Z,,,) introduced by Miiller
[26] has been used widely to evaluate the degree of heavy
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Table 2. Index and grades of heavy metals pollution and potential ecological risk.
Index Grade and corresponding value
Lyeo UP (£0) UMP (0~1) MP (1~2) MSP (2~3) SEP (3~4) SP (4~5) | EP (> 5)
E; Minor (<40) | Moderate (40~80) High (80~160) Very high (160~320) | Serious (>320)
RI Minor (< 150) | Moderate (150~300) | High (300~600) Very high (>600)

UP — unpolluted, UMP — unpolluted-moderately polluted, MP — moderately polluted, MSP — moderately to strongly polluted,
SP — strongly polluted, SEP — strong-extremely polluted, EP — extremely polluted.

metal contamination in terrestrial, aquatic, and marine envi-
ronments, and to quantify heavy metal accumulation,
which compares the present status with the background val-
ues [27]. 1,,, is mathematically expressed as:

I;eo = log, (Cn/an) )

...where C, is the measured concentration of the examined
heavy metal (n) in soil or sediment, and B, is the back-
ground concentration of elements » and k. The background
matrix correction factor due to lithogenic effects was con-
sidered using a constant of 1.5. In this study, B,, the local
background value for As, Cr, Cu, Ni, Pb, and Zn was con-
sidered as 5.84 mg-kg", 78.03 mg-kg’, 25.00 mg-kg"', 29.47
mgkg', 23.88 mgkg', and 69.88 mgkg', respectively
[28]. The geoaccumulation index (/,,,) was distinguished
into seven classes by the calculated value [29] (Table 2).

The potential ecological risk index (RI) proposed by
Hakanson [30] was used to evaluate the heavy metal cont-
amination from the perspective of sedimentology by con-
sidering the potential toxic effects of the heavy metals on
exposed organisms [30]. Mathematically, E; and RI are
expressed as following (2) and (3), respectively:

Ei=T; T )
n
i=1

...where E; is the individual coefficient reflecting the poten-
tial ecological risk for element i, 7; is the toxicity response
coefficient for element 7, C; is the measured concentration
for element 7, and C is the the background value for ele-
ment 7. In this study, the local background values are the
same as B, in formula (1). Ti accounts for both the exposure

level and the potential toxic response effect, and has been
established as 10 for As, 2 for Cr and Ni, 5 for Cu and Pb,
and 1 for Zn [30].

Statistical Analysis
One-way analysis of variance (ANOVA) and least-sig-

nificant difference (LSD) analysis were performed to deter-
mine if there were significant differences in physicochemi-

cal properties and concentrations of heavy metals from soil
and sediment. Moreover, Pearson’s correlation analysis was
used to test the relationship among heavy metals and phys-
iochemical characteristics. All the statistical analyses were
performed using SPSS 13.0 for Windows.

Results and Discussion
Physicochemical Properties

Compared with soil in sifu, water content, organic mat-
ter, and total phosphorus of sediment in sediment were sig-
nificantly high (p<0.05), while bulk density was low
(p<0.05) (Fig. 1). Moreover, there were also no significant
differences in water content, pH, bulk density, organic mat-
ter, total nitrogen, and total phosphorus between 0-10 cm
and 10-20 cm from either sediment or soil in the riparian
(p>0.05) (Fig. 2).

In most reservoirs, in fact, nutrients in sediment are
much higher than in the parent soil [31]. In this study, the
results also indicated that organic matter and total phospho-
rus of sediment were significantly higher than those from
soil (p<0.05). Differences in physicochemical properties
between soil and sediment can be attributed to formation
regime. In the TGR, sediment may be from the following
three possible sources: upstream watersheds (e.g. Jinsha,
Min, Jialing, and Wu), local uplands and catchments, and
bank erosion in the riparian zone. The former two types of
sources mainly occur in association with storm runoff dur-
ing the rainy season, while the last source occurs extending
the whole hydrologic year due to the occurrence of inten-
sive stream waves trigged by frequent navigation [5].
Soil may be formed in place from rock or in weathered rock
and minerals that have been transported from where the orig-
inal rock occurred. Therefore, nutrients of sediment were
richer than soil in sifu according to the regime of formation.

Metal Concentration
and Contamination Assessment

Concentrations of As, Cu, Pb, and Zn from sediment
were significantly higher than those from soil (p<0.05), but
no significant differences in Cr and Ni were found (p>0.05)
(Fig. 1). Moreover, there are no obvious differences in con-
centrations of heavy metals measured between 0-10 cm and
10-20 cm in either sediment or soil (p>0.05) (Fig. 1).
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Fig. 1. Concentrations of heavy metals from the sediment and soil in the riparian zone (mean+SE).
Different letters indicate the statistically significant differences (p<0.05) between sediment and soil by least-significant difference
(LSD) analysis in one-way ANOVA.

40 - Water content (%) Bulk density (g-cm™) 85 pH
a . 0-10cm | 2.0 | c '
[ 10-20 cm b a a a
30 - a 8.0 | a
1.5 2 4
7.5
20 H
b b 1.0 1
7.0 1
10 7 05 | 65 |
0 0.0 6.0
OM (g'kg") 4 TN (g'kg") 1.2 4 TP (g'kg")
| a 1.0
20 a s 12| a ] a @
0.8
1.0 | a
15 | ab
| 0.6
b 0.8
10 | b 06 1 04 1
04 | 0.2
5 4
. , 0.2 . 0.0
Sediment Soil Sediment Soil Sediment Soil

Fig. 2. Physicochemical properties of the sediment and soil in the riparian zone (mean+SE).
Different letters indicate the statistically significant differences (p<0.05) between sediment and soil by least-significant difference
(LSD) analysis in one-way ANOVA.
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Table 3. Individual and general indices of potential ecological risk.
As Cr Cu Ni Pb Zn RI
@ @ @ @ @ @ @
Lo, | 078 | 041 | -0.29 | -0.37 | 1.51 | 0.12 | -0.02 | -0.15 | 1.03 | -0.29 | 0.76 | -0.22 - -
Polluted level
Grade | UMP | UMP | UP UP MP | UMP | UP UP MP UP | UMP | UP - -
Potential E/RI| 2634 | 20.03 | 243 | 2.34 | 2241 | 846 | 292 | 261 | 1527 | 637 | 2.64 | 1.31 | 72.00 | 41.14
ecological 1isk | Grade Minor
UP — unpolluted, UMP — unpolluted-moderately polluted, MP — moderately polluted
Table 4. Correlation matrix among physicochemical properties and concentrations of heavy metals from sediment and soil.
wC BD pH OM N TP As Cr Cu Ni Pb Zn
WwC 1
BD | -0.838%** 1
pH | 0.322 -0.346 1
OM | 0.866** | -0.867** | 0.269 1
TN | 0.073 -0.296 0.046 0.183 1
TP | 0.464* | -0.427* | 0.408* | 0.581** | -0.249 1
As | 0.805**% | -0.797** | 0.155 | 0.746** | 0.299 0.303 1
Cr 0.108 0.025 -0.343 0.173 -0.294 0.041 0.399* 1
Cu | 0.879%* | -0.838** | 0334 | 0.880** | 0.074 | 0.545%* | 0.842** | 0.228 1
Ni | 0456* | -0.514* | 0.200 | 0.400* | 0.351 0.199 | 0.733** | 0.384* | 0.449* 1
Pb | 0.917** | -0.849** | 0.354 | 0.904** | 0.103 | 0.539** | 0.874** | 0.208 | 0.947** | 0.494** 1
Zn | 0.882**% | -0.836** | 0.374* | 0.893** | 0.089 0.603 | 0.856** | 0.254 | 0.968** | 0.550** | 0.967** 1

WC — water content, BD — bulk density, OM — organic matter, TN — total nitrogen, TP — total phosphorus.

* at 0.05 significance level, ** at 0.01 significance level.

The /,,, indicated that sediment was unpolluted by Cr
and Ni; unpolluted-moderately polluted by As and Zn; and
moderately polluted by Cu and Pb; while soil was unpol-
luted by Cr, Ni, Pb, and Zn; and unpolluted-moderately pol-
luted by As and Cu (Table 3). The E; values of heavy met-
als decreased in the order of As > Cu>Pb > Ni > Zn > Cr
for sediment, and the order is As > Cu>Pb > Ni>Cr>Z7n
for soil. All of E; values were less than 40, suggesting that
individual heavy metal in sediment and soil was a poten-
tially minor risk (Table 3). Moreover, R/ of both soil and
sediment are less than 150, indicating that heavy metals as
a whole are a potentially minor risk (Table 3).

In this study, concentrations of heavy metals in sedi-
ment were significantly higher than those in the riparian
soil (Table 3). The excessive contents of heavy metals in
sediment compared with soil should be partially ascribed to
external input of contaminated sediment produced from
upstream anthropogenic sources, including point sources
and diffuse sources. The former was related to industrial

effluents, domestic sewage, and waste disposal, while the
last was related to urban runoff, atmospheric deposition,
and agricultural solids (e.g. fertilizer, pesticides, and herbi-
cides) [16, 17]. On the other hand, correlation analysis
showed that heavy metals have significantly correlated
each other except for Cr (Table 4), suggesting that they
might have similar pollution sources [32, 33]. Moreover,
the nutrient is significantly positively related to heavy met-
als (except Cr) (Table 4), suggesting that enrichment of the
nutrient may be a reason for richer heavy metals in sedi-
ment of the riparian zone in the TGR.

Conclusions

Compared with soil in sifu, water content, organic mat-
ter, total phosphorus, heavy metals (As, Cu, Pb, and Zn) of
sediment were significantly high, but bulk density was low.
1., indicated that soil was contaminated by As and Cu,
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while sediment was polluted by As, Cu, Pb, and Zn.
Moreover, correlation analysis showed that heavy metals
had significant positive correlation with each other except
for Cr, suggesting that they maybe have similar pollution
sources. Enrichment of nutrients and heavy metals in sedi-
ment of the riparian zone are probably of formation regime
and human activities related to pollutant emission, and
could pose risks to the environment and human health.
To reduce the effect of sediment and soil of the TGR ripar-
ian zone, enhanced controls of soil erosion and pollution
treatment in the upper stream of the Yangtze River and the
TGR area are recommended.
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